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Abstract. We propose a theoretical framework for the adaptive control of visual sensitivity in
the vertebrate retina. The photoreceptor transfer function is modelled with a Michaelis–Menten
law instead of a logarithmic function. This more plausible function has a biophysical correlate,
and it allows consideration of the photoreceptor as the main locus of retinal adaptation. The
retinal model suggests that the function of photoreceptors might be to control visual sensitivity,
defined as the optimal transcoding of non-stationary visual information. This is done by using
an adaptive transfer function whose parameters are spatiotemporally and locally estimated by the
subsequent retinal circuit and fed back to the photoreceptors. The proposed model also supports
the functional architecture of the vertebrate retina.

1. Introduction

The vertebrate visual system must deal with a large range of light intensities, as many as 10
log units between the absolute visual threshold and the light intensity provided by a summer
day. It is composed of numerous nonlinear neural units organized in several layers, and
receives a large spatial array of temporal inputs from the environment. Both the nonlinearity
of neural units and the unknown dynamic ranges of the input array require the presence of
some locally adaptive mechanisms in the transfer function. Given a nonlinear input–output
relation of the visual processing the general problem of optimal sensory coding is to find the
laws for the adaptation of parameters which state the range of the input signals which are
optimally coded. Expressing the control of sensitivity in these terms raises two questions:
how to choose the neural function (and its parameters), and how to control the parameters
for obtaining an optimal sensory coding? In this paper we specifically address the former
question at the photoreceptor level, and we suggest a function of the subsequent retinal
network for the latter.

Although it is known that visual adaptation is one of the prominent functions of
the vertebrate retina [1], it still remains unclear exactly where and how it occurs [2].
The photoreceptor is thought to be the main retinal locus where adaptation is essentially
done [3]. But despite the recent molecular understanding of the enzymatic cascade leading
to phototransduction in vertebrate photoreceptors [4], we still have little understanding of
how the photoreceptor is involved in visual adaptation. Like other neurons, photoreceptors
are nonlinear: their response range is limited, and they exhibit linear characteristics only
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over a small part of their operating range (one or two log units). They must also deal
with unknown and varying light conditions which cannot be adequately perceived with
the restricted range of linear processing. Although the logarithm provides considerable
advantages in the coding of visual information, it only performs a static compression and its
output range is infinite. Therefore it is neither a physically plausible nor adequate model of
phototransduction. Indeed, from a neurophysiological viewpoint the photoreceptor function
is better described by the Fechner law, which has a sigmoidal shape on a log scale. In this
case, the control of visual sensitivity can be realized by horizontally shifting the sigmoidal
function according to the mean level of light intensity, and by adjusting the slope in its
‘linear’ part according to the variance in the intensities.

Consequently, in order to warrant an invariant perception in spite of continuous temporal
and spatial changes in light conditions, photoreceptors should be strongly involved in
optimally coding visual information; not only in morphological terms but also in functional
terms: in other words, they must adapt according to statistical properties of the visual
world which have to be estimatedlocally in order to take into account the temporal non-
stationarity and the spatial inhomogeneity of the visual signal. This raises the question of
how to actually estimate the statistical parameters of the input signal. In order to tackle
these problems, we propose a photosensor model that is based on biophysical principles
(section 2) and that shares important properties with vertebrate photoreceptors:

(i) It compresses the input signal according to a Michaelis–Menten law (subsection 3.1).
(ii) It performs in a fast dynamics an adaptive spatiotemporal low-pass filtering which

depends on the local signal-to-noise ratio (subsection 3.2).
(iii) It adapts to the changes of ambient light intensity in a slow dynamics by appropriate

adjustments of the parameters of the Michaelis–Menten law (subsection 3.3).
(iv) It obeys the Weber and Fechner laws, and the shift property (subsections 3.4 and 3.5).
(v) It works in synergy with the subsequent retinal network which it supplies with the neural

signals necessary to adapt its nonlinear transfer function (section 4).

This engineering model demonstrates the advantages of these basic principles in visual
adaptation. Finally it also lies within a spatiotemporal and structurally coherent model of
the vertebrate retina whose function is the control of visual sensitivity.

2. A biophysical first-order model of phototransduction

Transduction in vertebrate photoreceptors includes detection, amplification and neural coding
of the photonic signal. Most of the mechanisms involved are well known [4]: at a molecular
level they can be described and modelled by a cascade of enzymatic reactions. As stated
previously, phototranduction is a complex process, and we will therefore limit our scope to
the membrane stage of transduction, that is to the action of a light-dependent messager onto
membrane channels which account for the generation of presynaptic potential. The law of
mass action allows one to consider the following enzymatic reaction and its mathematical
expression for modelling the binding of the internal messager onto a membrane channel:

M
I,α→ M∗ β→ M and

∂M∗

∂t
= αI (M0 − M∗) − βM∗ . (1)

These equations express the transformation of the moleculeM (the receptor) into another
M∗ (e.g. an activated form) under the influence of a catalystI (the ligand) at a rateα, and
its free reformation at a rateβ, assuming a constant total amount of the molecule (active
and inactive forms), that is [M] + [M∗] = [M0]. This enzymatic reaction can be mapped
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Figure 1. (a) Electrical model of the photoreceptor (see text for explanation). (b) The shift
property of the Fechner lawV = f (logI ) for four values ofL0 = log(I0).

onto an electrical circuit in whichM, M∗ and M0 denote voltages (figure 1(a)): if β is
related to the ratiob/C whereb is a leakage conductance,C to a membrane capacity,M0

to a potential generator, andα to the ratioa/C wherea is a conductance modulated by the
input signalI , equations (1) express the dynamics of our photosensor in whichM∗ takes
the place of the receptor potentialV . Despite its simplicity, this model can account for
several properties well suited for adaptation to a varying visual environment.

3. Some basic properties

3.1. The Michaelis–Menten law

This model expresses an overall property of photoreceptors: their nonlinear and compressive
transfer function. Particularly when stimulated with a constant light intensityI , equation
(1) shows two basic properties: (i) its fast dynamics exhibits a temporal low-pass filtering
of the input signal with a time constant (up to several tens of milliseconds) being inversely
proportional to light intensityI , and (ii) the response at steady state follows a Michaelis–
Menten law:

V (I) = IVmax

I + σ
with σ = β

α
(2)

whereVmax is the saturation value of the potential equal toM0, and σ is a dissociation
constant which acts on the compression effect. This relation becomes quasi-linear with a
slopeVmax/σ whenI � σ , and converges towardsVmax whenσ � I . Such an intensity–
response relation has been observed in direct photocurrent measurement as well as in voltage
recording in cone outer segments of salamander and turtle [5].

3.2. Local adaptive spatiotemporal regularization

A photoreceptor is actually always surrounded by other photoreceptors, and there exists
in some vertebrate species an electrical coupling between neighbouring cones [7]. This
coupling takes place at the level of the basal terminal of photoreceptors where the membrane
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Figure 2. Resistive and capacitive network provided by the coupling between neighbouring
cones through a conductanceG. Due to the intensity dependence of the input conductance, this
network is nonlinear: the time and space constants depend locally on the input signal.

potential V appears. The effect of this coupling simply is a connection of nodesV of
neighbouring photoreceptors with a conductanceG, leading to a resistive and capacitive
network driven by a nonlinear input conductanceαI (figure 2). Beyond the compressive
nonlinearity, the multiplicative effect of the input signalI on the conductanceα (figure 1(a))
implies that the spatiotemporal low-pass filtering performed by the resulting photoreceptor
layer is modulated in a coherent way by light intensity: indeed, derivation of the nonlinear
transfer function of this network shows that its space and time constants are given byG/(αI)

and C/(αI), respectively. The input signal is then integrated within a spatiotemporal
window whose size is inversely proportional to the light intensity. When one recalls that
the signal-to-noise ratio decreases with light intensity, the advantage of such a solution
becomes clearer: the dependence of space and time constants with light intensity is such
that it allows the system to thwart the influence of spatiotemporal noise whatever the light
conditions, as suggested in [8, 9]. In that way, as early as the first neural layer of the retina,
the notion oflocal adaptive spatiotemporal regularizationappears naturally.

3.3. Optimal sensory coding

Optimal sensory coding must occur as early as at the photoreceptor level. This implies
an optimal representation of the input range of light intensity onto the response range of
the photoreceptor: in order to achieve this optimization we use the simpler criterion of
maximizing the sensitivityS of the system, defined as the slope of equation (2) between
I0 −1I andI0 +1I whereI0 and1I denote the mean and standard deviation of the input
signal, respectively. MaximizingS according toσ leads to its optimal value:

σopt =
√

I 2
0 − 1I 2 and σopt ' I0 when1I � I0 . (3)

Thus, optimal sensory coding can be achieved by adjusting with a slow dynamics (with time
constants up to the order of several minutes) the parameterσ of the photoreceptor transfer
function according to the meanI0 and the standard deviation1I of light intensity.

3.4. The Weber law

Let us now consider that the photoreceptor temporally adapts but slowly compared to
its temporal low-pass behaviour to a background stimulusI0 according to equation (3)
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when 1I � I0. After visual adaptation which produces at first a transient response, its
response tends to converge towards1

2Vmax and this independently of the stimulusI0. Then,
detectability of an increment1I is achieved ifV (I0 + 1I) exceeds a threshold0 larger
than Vmax/2. We can show that for these conditions the model obeys the Weber law [6],
one of the basic psychophysical laws of light adaptation which expresses the constancy of
the ratio1I/I0.

3.5. The Fechner law and the shift property

If we assume a Michaelis–Menten law which satisfies the Weber law (i.e.σopt ' I0), we
can also express it as a function of the logarithmL of the light intensityI :

V (L) = Vmax/(1 + exp(L0 − L)) . (4)

This expression describes a sigmoid curve which shares some properties with another well
known psychophysical law, the Fechner law: there exists a medium range of intensities,
above the very small values and below the very large values, for which the response curve
can be approximated byV (L) = A logL (figure 1(b)). In accordance with the criterion of
maximization of the sensitivity and for1I � I0, we finally obtain a horizontal translation
of this sigmoid according toL0 (figure 1(b)). Thus, adaptation ofσ with respect to the mean
intensity provides the shift property in agreement with measurements of cone intracellular
responses and in a more general way with sensory responses [1].

4. The photoreceptors in the retinal circuit

The first-order photoreceptor model we propose shows some basic properties for light
adaptation. But in order to achieve this function the model requires a strong relation (see
equation (3)) between some parameters of the photoreceptor transfer function and some
statistical properties of the input signal. The electrical analogue of the Michaelis–Menten
law (figure 1(a)) which could be considered as a membrane model for generating receptor
potentials suggests a neurobiologically plausible mechanism to perform such a modulation
of the photoreceptor transfer function: the leakage conductanceβ of the membrane might
be modulated by a signal related to the mean and standard deviation of light intensity. These
statistical parameters need to be estimated since they are not spatiotemporally constant in
non-stationary environments. This raises the question of how these statistical parameters
could be estimated. Since there is no linear measure of intensity available, the statistics
cannot be derived directly and can only be based on the nonlinear photoreceptor output.
A smarter and more natural solution is nonlinear feedback: the statistical parameters can
be estimated from the photoreceptor output (i.e. the compressed signal) and fed back after
expansion in terms of a modulation of essential photoreceptor parameters. A block diagram
of the suggested structure is shown in figure 3, which in the following is compared to the
typical neural structure of the vertebrate retina:

(i) the photoreceptor transduces light and compresses the resulting signal according to the
estimates of the spatiotemporal meanÎ and the standard deviation1Î ;

(ii) the horizontal cells layer performs a spatiotemporal low-pass filtering of the
photoreceptor outputI , thus providing an estimate of the meanÎ through an inhibitory
synaptic feedback by modulating the photoreceptor membrane conductanceβ;

(iii) bipolar cells receive the linear difference between photoreceptors and horizontal cells
outputs, that is the instantaneous deviationI − Î ;
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Figure 3. Structure provided by information theory in which estimation of the statistical
parameters is made downstream of the photoreceptive compression. The modulation of the
photoreceptor transfer function is realized through expansive feedbacks.

(iv) this signal is then rectified and spatiotemporally integrated by sustained amacrine cells
which provide a signal related to the standard deviation1Î to dopaminergic cells; and
finally

(v) these last cells release a neuromodulatory substance, dopamine, which reaches several
sites [10] (e.g. photoreceptors and horizontal cells) where it modulates compression and
mean estimation stages.

There are several theoretical reasons for the modulation of the mean estimator with a
feedback signal: firstly, the theory of optimal filtering suggests, in order to obtain the best
‘prediction’, that the window size of the mean estimation should depend on the signal-to-
noise ratio [11]. Thus the measurement of the prediction error by the bipolar cell could
provide a means of adjusting the mean estimation. Secondly, optimal transcoding at the
level of bipolar cells could also occur due to their nonlinear responses. But in this case,
it can be performed by modulating the horizontal cell signal with the mean of the rectified
bipolar output corresponding to the standard deviation estimation1Î [6].

It must also be noted that the precise nature of feedbacks in the model cannot
be specified further without explicitly describing the relations between input and output
statistics including some knowledge about the nature of the input signal (e.g. its probability
density).

5. Conclusion

In summary the control of the visual sensitivity could be performed by an adaptive
photoreceptor whose parameters should be spatiotemporally and locally estimated by the
subsequent retinal circuit: we have proposed a model of the photoreceptor which links the
Michaelis–Menten, Weber and Fechner laws, and which provides an optimal sensory coding
according to the statistical properties of the input signal. These statistical characteristics
are estimated by the subsequent retinal network and fed back onto the photoreceptor in
order to adjust its nonlinear transfer function. Moreover, its nonlinearity also induces
a spatiotemporal filtering, locally adapted to the characteristics of light signals. This
biologically plausible model clarifies the role of the retina in visual adaptation and points
out some of the neural strategies involved in this mechanism [6]: fast local synaptic
feedbacks to adjust the photoreceptor response around the local spatiotemporal mean, and
slow neurohormonal feedbacks to enhance the sensitivity of bipolar cells response according
to the slow (light/dark) change from a non-stationary environment. Consequently, as claimed
in [2], rather than functioning independently, each photoreceptor is an integral part of an
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elaborate synaptic network. However, the possibility that these mechanisms are also present
inside a single photoreceptor should not be excluded, since single photoreceptors already
show temporal adaptation [3].
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